

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

Tate Alustra

Tate

EPD HUB, HUB- 3659

Publishing date 18 July 2025, last updated on 18 July 2025,
valid until 17 July 2030.

Tate.[®]

Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.1 (5 Dec 2023) and JRC characterization factors EF 3.1.

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Tate North America
Address	52 Springvale Road, Red Lion PA 17356, USA
Contact details	info@tateinc.com
Website	www.tateinc.com

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804:2012+A2:2019/AC:2021 and ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	N/A
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Emma Johnson
EPD verification	Independent verification of this EPD and data, according to ISO 14025: <input type="checkbox"/> Internal verification <input checked="" type="checkbox"/> External verification
EPD verifier	Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Tate Alustra
Additional labels	-
Product reference	-
Place(s) of raw material origin	United States
Place of production	Red Lion PA, USA
Place(s) of installation and use	North America
Period for data	Calendar Year 2023
Averaging in EPD	No averaging
Variation in GWP-fossil for A1-A3 (%)	-
GTIN (Global Trade Item Number)	-
NOBB (Norwegian Building Product Database)	-

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 m2
Declared unit mass	6.88 kg
GWP-fossil, A1-A3 (kgCO₂e)	1.19E+01
GWP-total, A1-A3 (kgCO₂e)	7.95E+00
Secondary material, inputs (%)	62.8
Secondary material, outputs (%)	87.4
Total energy use, A1-A3 (kWh)	71.6
Net freshwater use, A1-A3 (m³)	0.38

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

For over 60 years, Tate has been an industry leading global manufacturer of data center solutions. We work collaboratively with our data center clients to provide structural ceilings, containment systems, airflow grills and security cages that are reliable, innovative, and high performing.

Our team of professional and highly qualified technical engineers are on hand to support our clients with their specific data center project requirements. We have a long-term commitment to delivering a sustainable agenda as part of Kingspan Group's 10-year Planet Passionate program, which addresses climate change, circularity and protection of our natural world.

We believe these can only be met through true collaboration and partnership and are delighted that together our initiatives have been recognized by global environmental impact non-profit CDP since 2016, for driving climate change. As a member of RE100, together with Kingspan Group, we are actively committed to 100% renewable electricity and have joined as a key global partner with the World's GBC's.

PRODUCT DESCRIPTION

Tate Alustra boasts a remarkable design, optimized to offer superior performance and unparalleled ease of installation. This innovative aluminum grid features a strut-like profile, resulting in a lightweight, ultra-strong ceiling system that is not only easy to transport but also effortless to install. The heavy-duty aluminum profile of Tate Alustra enables flexibility when it comes to suspending the grid from the building's structure. With connection spacing up to 8 feet apart.

Tate Alustra has a maximum safe working load of up to 1200 pounds when using a spring nut connection with a 4x4 hanger spacing. There are two connection options for suspending equipment and infrastructure within a data center. Flexible connections to the building structure anywhere along the Tate Alustra mains and up to 8 feet, enabling the creation of any desired layout, for tiles and lights.

Further information can be found at www.tateinc.com.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	100	EU, Asia
Minerals	0	N/A
Fossil materials	0	N/A
Bio-based materials	0	N/A

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0.0179
Biogenic carbon content in packaging, kg C	1.1564

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 m ²
Mass per declared unit	6.88 kg
Functional unit	-
Reference service life	30 Years

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Product stage		Assembly stage		Use stage							End of life stage				Beyond the system boundaries		
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D	
x	x	x	x	x	MND	MND	MND	MND	MND	MND	MND	x	x	x	x	x	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recycling

Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material

losses occurring during the manufacturing processes as well as losses during electricity transmission.

The transport of the raw material from supplier to the factory site is composed of 790 km by road transport, assuming it is done by a >32-ton EURO6 lorry and 6,560 km by sea transport via container ship.

The production of the Tate Alustra takes place at the facility in Red Lion, Pennsylvania. The data from the Red Lion manufacturing site, such as energy and ancillary resources consumption and waste generation for the year 2023 was considered and allocated to the Tate Alustra product as per the site's annual production volumes.

As per co-product allocation, aluminium manufacturing losses are excluded for the main product. There is no other manufacturing losses modelled - as only other wastes are lubrication oil and saw blades which are considered minor waste streams that are individually less than 1% of the total product weight and well below 5% cumulatively.

The finished product is packaged in cardboard boxes, loaded onto a wooden crate, and secured with pallet wrap clear. Installation parts such as the turnbuckle, screws and connectors are considered in the module A5 installation as they enter the system's scope at the installation stage.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts incurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions. The transportation distance is based on the weighted average distance of sales made in 2023. The installation parts are made of carbon steel and ductile iron. The installation is carried out with electrical machinery. No construction losses are

considered other than packaging waste, as none of the system's parts are amended on site.

The following recommended US scenarios are considered for the packaging end of life:

Resource	Scenario	Reference
Wood pallet	26.9% recycled 14.3% incinerated with ER 58.8% landfill	Containers and Packaging: Product-Specific Data US EPA
Plastics	13.7% recycled 16.9% incinerated with ER 69.4% landfill	Containers and Packaging: Product-Specific Data US EPA
Cardboard	80.9% recycled 3.7% incinerated with ER 15.4% landfill	Containers and Packaging: Product-Specific Data US EPA

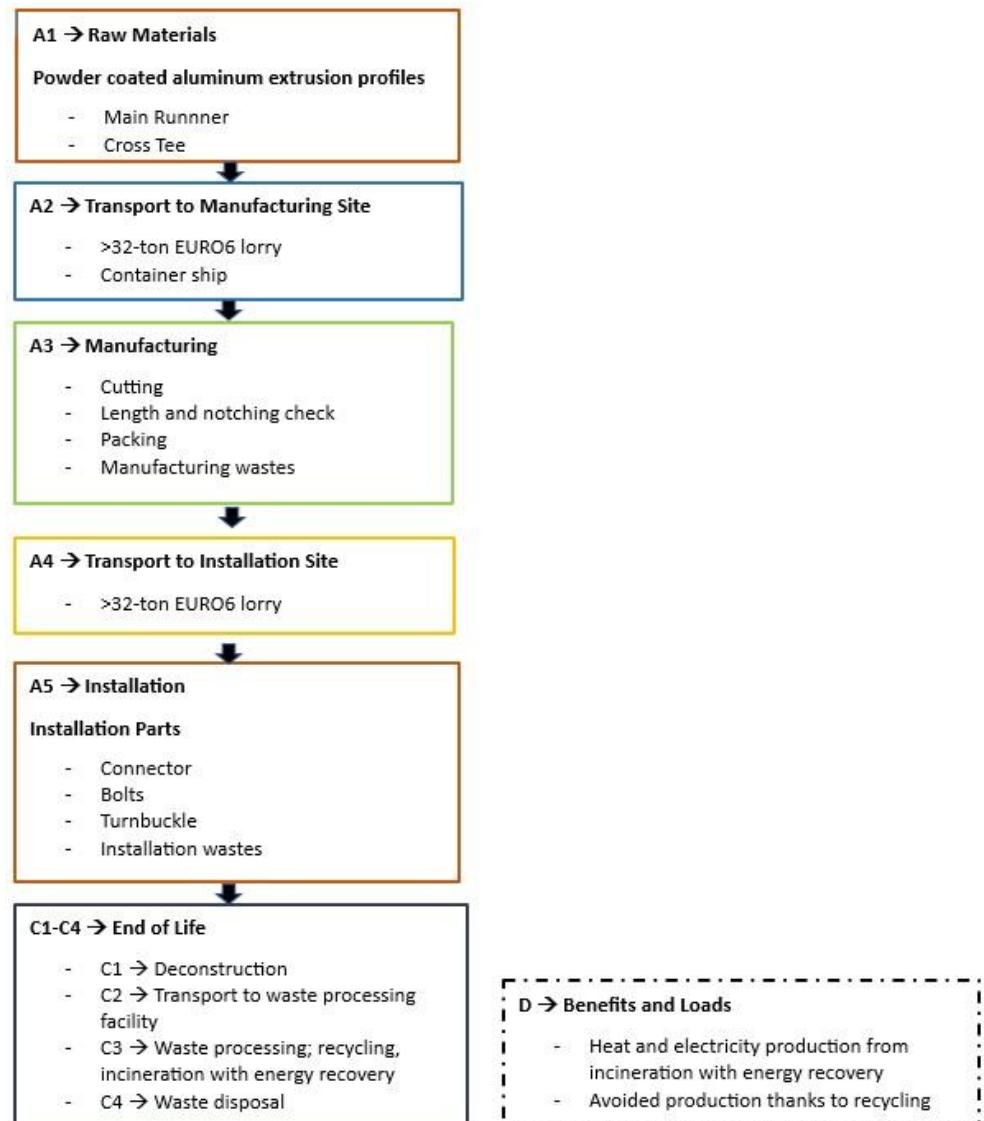
PRODUCT USE AND MAINTENANCE (B1-B7)

The use phase is not covered, assuming there are no use emissions or replacements. Air, soil, and water impacts during the use phase have not been studied. The Reference Service Life of this product is 30 years.

PRODUCT END OF LIFE (C1-C4, D)

The energy consumption during demolition, the construction of the waste processing facility and the appropriate equipment are not a part of this model. Due to the material and energy recovery potential of the materials, a part of the end-of-life product is converted into recycled raw materials while electric and heat energy are generated from incineration. The distance from demolition site to metal recycling facility was assumed at 250km and landfill at 25km, the transport was assumed as road freight, lorry >32 metric ton.

The assumptions for recycled materials were acquired from the Aluminum Association and the World Steel Association, stating 90% recycled Aluminum and 85% recycled steel. Due to the material and energy recovery potential of parts in the end-of-life product and packaging, recycled raw materials lead to avoided virgin material production, while the energy recovered from incineration displaces electricity and heat production (D). The benefits and loads of incineration and recycling are included in Module D for packaging materials as well.


The table below shows the used waste processing scenarios for the accumulated product materials and installation parts. The systems parts are either Aluminum or steel, the following recommended scenarios were considered for the End of Life:

Resource	Scenario	Reference
Aluminum	90% recycled 10% landfill	Aluminum Association
Steel	85% recycled 15% landfill	World Steel Association

The benefits considered for the system parts are the avoided production of Aluminum and steel thanks to recycling (while discounting the recycled content of the parts to avoid double accounting). The loads considered are from the recycling of such parts.

The same logic is applied to the packaging with the addition of recovered energy from the incineration with ER. The benefits and loads of product and packaging material recycling are included in Module D.

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

VALIDATION OF DATA

Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC2021 and JRC EF 3.1.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	Allocated by mass or volume
Packaging material	Allocated by mass or volume
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3 (%)	-

There is no average result considered in this study since EPD refers to one specific product produced in one production plant.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1 environmental data sources follow the methodology 'allocation, Cut-off, EN 15804+A2'.

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP – total ¹⁾	kg CO ₂ e	9,79E+00	7,30E-01	-2,56E+00	7,95E+00	1,78E+00	8,22E+00	MND	3,23E-02	2,58E-01	1,49E-01	4,87E-03	-2,44E+01						
GWP – fossil	kg CO ₂ e	9,50E+00	7,29E-01	1,67E+00	1,19E+01	1,78E+00	3,97E+00	MND	3,23E-02	2,58E-01	1,13E-01	4,87E-03	-2,37E+01						
GWP – biogenic	kg CO ₂ e	6,56E-02	1,45E-04	-4,24E+00	-4,18E+00	4,20E-04	4,24E+00	MND	1,23E-05	5,29E-05	3,61E-02	-1,55E-06	-1,09E-01						
GWP – LULUC	kg CO ₂ e	2,15E-01	3,64E-04	3,01E-03	2,18E-01	8,29E-04	7,56E-04	MND	1,64E-05	9,66E-05	1,30E-04	2,78E-06	-6,57E-01						
Ozone depletion pot.	kg CFC-11e	9,38E-07	1,12E-08	1,10E-07	1,06E-06	2,86E-08	8,01E-09	MND	2,05E-10	4,89E-09	1,06E-09	1,41E-10	-4,57E-07						
Acidification potential	mol H ⁺ e	6,07E-02	1,06E-02	7,41E-03	7,87E-02	4,52E-03	1,73E-02	MND	9,02E-05	5,97E-04	8,71E-04	3,45E-05	-1,57E-01						
EP-freshwater ²⁾	kg Pe	3,89E-04	4,26E-05	2,78E-04	7,10E-04	1,43E-04	7,75E-05	MND	1,99E-05	1,78E-05	5,63E-05	4,00E-07	-1,35E-02						
EP-marine	kg Ne	8,03E-03	2,65E-03	2,06E-03	1,27E-02	1,15E-03	4,51E-03	MND	1,84E-05	1,57E-04	2,41E-04	1,32E-05	-1,92E-02						
EP-terrestrial	mol Ne	8,96E-02	2,93E-02	2,25E-02	1,41E-01	1,24E-02	4,24E-02	MND	1,59E-04	1,70E-03	2,18E-03	1,44E-04	-1,83E-01						
POCP ("smog") ³⁾	kg NMVOCe	3,20E-02	8,73E-03	7,75E-03	4,85E-02	6,86E-03	1,32E-02	MND	6,35E-05	9,64E-04	6,34E-04	5,15E-05	-8,42E-02						
ADP-minerals & metals ⁴⁾	kg Sbe	2,05E-05	1,48E-06	4,87E-06	2,69E-05	5,14E-06	-6,90E-06	MND	4,35E-08	8,33E-07	4,34E-06	7,74E-09	-5,65E-05						
ADP-fossil resources	MJ	1,29E+02	1,01E+01	2,45E+01	1,63E+02	2,67E+01	4,68E+01	MND	5,97E-01	3,65E+00	1,20E+00	1,19E-01	-3,90E+02						
Water use ⁵⁾	m ³ e depr.	2,32E+00	4,10E-02	3,12E+00	5,48E+00	1,32E-01	7,86E-01	MND	7,14E-03	1,81E-02	2,74E-02	3,45E-04	-5,21E+01						

1) GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Particulate matter	Incidence	6,99E-07	4,92E-08	1,50E-07	8,99E-07	1,75E-07	4,51E-07	MND	4,69E-10	2,02E-08	1,27E-08	7,86E-10	-1,62E-06						
Ionizing radiation ⁶⁾	kBq	5,34E-01	7,07E-03	3,53E-01	8,94E-01	2,32E-02	9,73E-02	MND	1,26E-02	4,42E-03	1,20E-02	7,51E-05	-7,31E+00						
Ecotoxicity (freshwater)	CTUe	1,85E+02	1,15E+00	6,83E+00	1,93E+02	3,76E+00	5,39E+00	MND	6,07E-02	4,91E-01	1,03E+00	1,00E-02	-8,33E+00						
Human toxicity, cancer	CTUh	2,03E-08	1,36E-10	5,77E-09	2,62E-08	2,97E-10	2,23E-09	MND	3,87E-12	4,31E-11	1,07E-10	8,98E-13	-4,56E-08						
Human tox. non-cancer	CTUh	3,06E-07	4,88E-09	1,07E-08	3,22E-07	1,72E-08	1,24E-08	MND	1,71E-10	2,32E-09	4,42E-09	2,06E-11	6,44E-08						
SQP ⁷⁾	-	1,56E+01	6,42E+00	5,43E+02	5,65E+02	2,69E+01	7,08E+00	MND	8,60E-02	2,47E+00	4,67E+00	2,35E-01	-1,97E+01						

6) EN 15804+A2 disclaimer for ionizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Renew. PER as energy ⁸⁾	MJ	5,42E+01	1,14E-01	4,14E+01	9,57E+01	3,66E-01	-3,57E+01	MND	6,64E-02	6,13E-02	2,15E-01	1,15E-03	-1,72E+02						
Renew. PER as material	MJ	0,00E+00	0,00E+00	3,72E+01	3,72E+01	0,00E+00	-3,72E+01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	5,42E+01	1,14E-01	7,86E+01	1,33E+02	3,66E-01	-7,29E+01	MND	6,64E-02	6,13E-02	2,15E-01	1,15E-03	-1,72E+02						
Non-re. PER as energy	MJ	1,27E+02	1,01E+01	2,40E+01	1,61E+02	2,67E+01	4,50E+01	MND	5,97E-01	3,65E+00	1,20E+00	1,20E-01	-3,90E+02						
Non-re. PER as material	MJ	1,56E+00	0,00E+00	2,50E+00	4,06E+00	0,00E+00	-2,50E+00	MND	0,00E+00	0,00E+00	0,00E+00	-1,56E+00	0,00E+00						
Total use of non-re. PER	MJ	1,29E+02	1,01E+01	2,65E+01	1,65E+02	2,67E+01	4,25E+01	MND	5,97E-01	3,65E+00	1,20E+00	-1,44E+00	-3,90E+02						
Secondary materials	kg	4,32E+00	4,48E-03	1,15E-01	4,44E+00	1,14E-02	1,19E+00	MND	6,63E-05	1,67E-03	1,94E-03	3,00E-05	3,77E+00						
Renew. secondary fuels	MJ	8,39E-05	3,69E-05	9,81E-01	9,81E-01	1,45E-04	2,24E-05	MND	1,94E-07	2,11E-05	1,33E-04	6,22E-07	-8,77E-04						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m ³	3,62E-01	1,18E-03	1,25E-02	3,76E-01	4,02E-03	3,45E+00	MND	2,17E-04	5,04E-04	6,38E-04	1,24E-04	-1,31E+00						

8) PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Hazardous waste	kg	6,35E-02	1,55E-02	8,94E-02	1,68E-01	4,51E-02	1,72E-02	MND	2,20E-03	5,46E-03	1,15E-02	1,32E-04	-6,29E+00						
Non-hazardous waste	kg	6,55E+00	2,61E-01	1,55E+00	8,36E+00	8,35E-01	9,36E+00	MND	9,75E-02	1,12E-01	4,72E-01	3,02E-03	1,47E+01						
Radioactive waste	kg	5,00E-04	1,73E-06	4,59E-05	5,48E-04	5,69E-06	5,40E-06	MND	2,87E-06	1,10E-06	3,06E-06	1,83E-08	-1,94E-03						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	3,88E+00	0,00E+00	0,00E+00	3,88E+00	0,00E+00	7,98E-01	MND	0,00E+00	0,00E+00	6,01E+00	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,21E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	2,25E-03	0,00E+00	0,00E+00	2,25E-03	0,00E+00	3,12E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,95E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy –	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,12E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ADDITIONAL INDICATOR – GWP-GHG

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-GHG ⁹⁾	kg CO ₂ e	9,72E+00	7,29E-01	1,68E+00	1,21E+01	1,78E+00	3,97E+00	MND	3,23E-02	2,58E-01	1,13E-01	4,87E-03	-2,43E+01						

9) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. In addition, the characterisation factors for the flows – CH₄ fossil, CH₄ biogenic and Dinitrogen monoxide – were updated. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterisation factor for biogenic CO₂ is set to zero.

ENVIRONMENTAL IMPACTS – TRACI 2.1.

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO ₂ e	1,63E+01	7,20E-01	1,67E+00	1,87E+01	1,75E+00	4,03E+00	MND	3,20E-02	2,54E-01	1,38E-01	4,75E-03	-2,42E+01						
Ozone Depletion	kg CFC-11e	1,39E-07	1,18E-08	1,22E-07	2,73E-07	3,02E-08	8,45E-09	MND	2,22E-10	5,16E-09	1,12E-09	1,49E-10	-4,75E-07						
Acidification	kg SO ₂ e	6,93E-02	9,02E-03	6,68E-03	8,50E-02	3,92E-03	1,46E-02	MND	7,64E-05	5,15E-04	7,39E-04	3,11E-05	-1,30E-01						
Eutrophication	kg Ne	2,35E-02	4,16E-04	1,01E-02	3,40E-02	4,83E-04	7,08E-04	MND	1,83E-05	6,54E-05	1,36E-04	3,47E-06	6,14E-04						
POCP ("smog")	kg O ₃ e	9,31E-01	1,73E-01	1,34E-01	1,24E+00	8,37E-02	2,49E-01	MND	9,48E-04	1,15E-02	1,18E-02	8,88E-04	-1,11E+00						
ADP-fossil	MJ	1,94E+02	1,01E+01	1,30E+01	2,17E+02	2,68E+01	7,72E+00	MND	5,97E-01	3,65E+00	1,20E+00	1,20E-01	-3,91E+02						

SCENARIO DOCUMENTATION

Manufacturing energy scenario documentation

Scenario parameter	Value
Electricity data source and quality	Electricity, USA, Pennsylvania, 2023 (One Click LCA)
Electricity CO2e / kWh	0.51 kg CO2e / kWh
District heating data source and quality	Natural gas (Industrial furnace >100 kW)
District heating CO2e / kWh	0.25

Transport scenario documentation A4

Scenario parameter	Value
Vehicle type used for transport	Transport, freight, lorry >32 metric ton, EURO6
Average transport distance, km	1742
Capacity utilization (including empty return)	50%
Bulk density of transported products	-
Volume capacity utilization factor	1

Installation scenario documentation A5

Scenario information	Value
Ancillary materials for installation (specified by material) / kg or other units as appropriate	-
Water use / m ³	-
Other resource use / kg	1.93 kg of carbon 8.8 steel

Quantitative description of energy type (regional mix) and consumption during the installation process / kWh or MJ	Market group for electricity, low voltage (Reference product: electricity, low voltage) 0.0955 kWh
Waste materials on the building site before waste processing, generated by the product's installation (specified by type) / kg	Polyethylene film: 0.001 kg Cardboard: 0.01 kg Wood pallet: 0.118 kg
	% are for recycling, incineration w. energy recovery, landfill respectively. PE film: 14%, 17%, 69% Cardboard: 81%, 4%, 15% Wood pallet: 27%, 14%, 59%
Output materials (specified by type) as result of waste processing at the building site e.g. collection for recycling, for energy recovery, disposal (specified by route) / kg	-
Direct emissions to ambient air, soil and water / kg	-

End of life scenario documentation

Scenario information	Value
Collection process – kg collected separately	-
Collection process – kg collected with mixed waste	6.88
Recovery process – kg for recycling	6.71
Recovery process – kg for energy recovery	0.42
Disposal (total) – kg for final deposition	-
Scenario assumptions e.g. transportation	Assumed transport distances are 25km to waste treatment and 50km to a recycling facility.

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? [Read more online](#)

This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited
18.07.2025

